

Current sensor

Model Number:

CR1V 75 PB05

For the electronic measurement of current:DC,AC,pulsed...,with galvanic separation between the primary and the secondary circuit.

Features

- Closed loop (compensated) current sensor using the Hall effect
- ♦ Galvanic separation between primary and secondary
- Insulating plastic case recognized according to UL 94-V0
- ♦ Very good linearity
- ♦ High accuracy
- ♦ Very low offset drift over temperature
- ♦ No insertion losses
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed and servo motor drives
- ♦ Uninterruptible Power Supply (UPS)
- Static converters for DC motor drives
- ♦ Switch Mode Power Supplies (SMPS)
- ♦ Power supply for welding applications
- ♦ Battery management
- ♦ Photovoltaic inverter
- ♦ Module power supply

Safety

The sensor must be used according to IEC 61800-5-1.

The sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	Vc	V	6
Primary conductor temperature	T_{B}	$^{\circ}$	110
ESD rating, Human Body Model (HBM)	V ESD	kV	4

X Stresses above these ratings may cause permanent damage.

Environmental and mechanical characteristics

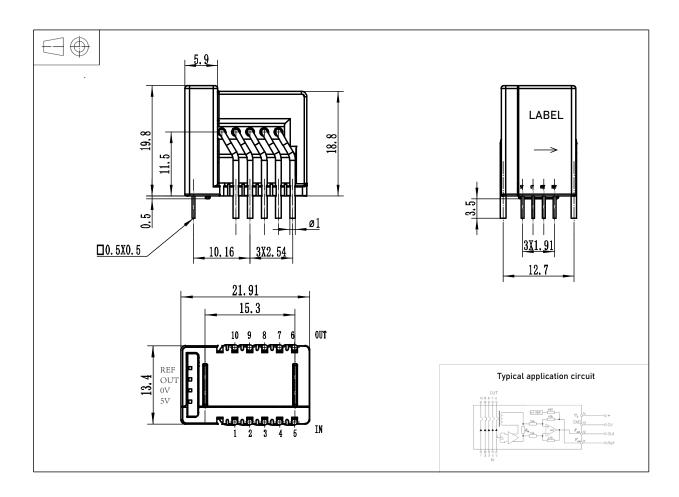
Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}\!\mathbb{C}$	-40		105	
Ambient storge temperature	<i>T</i> s	$^{\circ}\!\mathbb{C}$	-55		125	
Mass	m	g		10		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test, @50Hz,1min	$V_{ m d}$	kV	4.1	
Impulse withstand voltage 1.2/50µs	V_{W}	kV	7.5	
Clearance(Prisec.)	d cı	mm	7.5	
Creepage distance(Prisec.)	d Cp	mm	7.5	
Plastic case	1	1	UL94-V0	
Comparative traking index	СТІ	PLC	3	
Application example	1	1	300V CAT III PD2	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CATⅢ, PD2
Application example	-	-	600V CAT III PD2	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CATⅢ, PD2

X Exposure to absolute maximum ratings for extended periods may degrade reliability.

Electrical data


CR1V 75 PB05

 \aleph With T_A = 25 °C, V_C = 5V, R_L = 10kΩ,Unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	<i>I</i> _{PN}	Α		±75		
Maximum measured current	I PM	А	-180		180	
Turns ratio	Kn	-	1-2-3-4- 5			
Supply voltage	V c	V	4.75	5	5.25	@ ±5%
Current consumption	<i>I</i> c	mA	8 + / _P /N _S			@ Ns=966
Theoretical sensitivity	G_{th}	mV/A		6.25		@ V _C =5V
Sensitivity error	\mathcal{E}_{G}	%	-1		1	Exclusive of V _{OE}
Temperature of G	TCG	ppm/K	-40		40	@ -40°C~105°C
Reference voltage@I _P =0A	V_{REF}	V	2.495	2.5	2.505	
Output voltage	V_{OUT}	V	2.5 ± ((1.125 * I _{PN} /	I _{PM})	
Output voltage@I _P =0A	V_{OUT}	V		V_{REF}		
Offset voltage	VoE	mV	-5		5	
Temperature drift of reference voltage	TCV _{REF}	ppm/K	-50	±5	50	Reference
Temperature drift of output voltage@/ _P =0A	TCVоит	ppm/K	-4		4	@ ppm/K of 2.5V @ -40 ℃~105 ℃
Load resistance	R∟	kΩ	10			
Linearity error	\mathcal{E}_{L}	% of I _{PN}	-0.1		0.1	Exclusive of V _{OE}
Accuracy@ I _{PN}	X	% of I _{PN}			1	Exclusive of V _{OE}
Response time@ 90% of I _{PN}	t r	μs			1	
Frequency bandwidth(-3dB)	BW	kHz	200			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance ±0.3 mm

Remarks

 \Leftrightarrow $I_{\rm S}$ is positive when the measured electric current flows from 1,2,3,4,5 to 6,7,8,9,10.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.